

Visual Object Networks: Image Generation with Disentangled 3D Representations

Jun-Yan Zhu¹

Motivation

Problem: Existing 2D generative models

Do not capture the 3D nature of the world. **Do not allow 3D-aware image manipulations.**

Given an image of a car:

- What if we apply its texture to a van?
- Can we mix different 3D designs?

Goal: Joint 3D & 2D generation with disentangled representation.

VON (ours)

Chengkai Zhang¹ Jiajun Wu¹ Joshua B. Tenenbaum¹ Antonio Torralba¹ 2 Google Research 1 Massachusetts Institute of Technology

Visual Object Networks (VON)

shape network G_{shape}

Training data: Unpaired 3D shapes & Image datasets

Zhoutong Zhang¹

Total Loss:

3D Shape Loss:

Texture Loss:

Formulation

Image Formation: $x = G_{\text{texture}}(\mathcal{P}(G_{\text{shape}}(\mathbf{z}_{\text{shape}}), \mathbf{z}_{\text{view}}), \mathbf{z}_{\text{texture}})$

 $\mathcal{L} = \lambda_{\text{shape}} \mathcal{L}_{\text{shape}} + \mathcal{L}_{\text{texture}}$

Adversarial losses

Image Generation (2D GANs vs. VON)

VON (ours)

William T. Freeman^{1,2}

Shape Generation

	3D-GAN (voxels)	VON (voxels)
Cars	3.021	0.021
Chairs	2.598	0.082
	3D-GAN (DF)	VON (DF)
Cars	3.896	0.002
Chairs	1.790	0.006