
Visual Object Networks: Image Generation with Disentangled 3D Representations
Jun-Yan Zhu1 Zhoutong Zhang1 Chengkai Zhang1 Jiajun Wu1 Antonio Torralba1 Joshua B. Tenenbaum1 William T. Freeman1,2

1 Massachusetts Institute of Technology        2 Google Research
Motivation Visual Object Networks (VON)

Image Generation (2D GANs vs. VON)

Shape Generation

Training data: Unpaired 3D shapes & Image datasets Applications: Disentangled Generation

DCGAN LSGAN WGAN-GP

VON (ours)

3D

2D

DCGAN LSGAN WGAN-GP

VON (ours)

Chairs

Problem: Existing 2D generative models

Goal: Joint 3D & 2D generation with disentangled representation.

Total Loss:

Texture Loss:

3D Shape Loss: 

as viewpoint and texture. To model the 3D shape prior and generate realistic shapes, we adopt the
recently proposed 3D Generative Adversarial Networks [Wu et al., 2016].

Consider a voxelized 3D object collection {vi}Ni , where vi 2 RW⇥W⇥W , we learn a generator Gshape
to map a shape code zshape, randomly sampled from a Gaussian distribution, to a W⇥W⇥W voxel
grid. Meantime, we train a 3D discriminator Dshape to classify if a shape is real or generated. Both
discriminator and generator contain fully volumetric convolutional and deconvolutional layers. We
find that the original 3D-GAN [Wu et al., 2016] sometimes suffers from mode collapse. To improve
the quality and diversity of the results, we use the Wasserstein distance in WGAN-GP [Arjovsky et al.,
2017, Gulrajani et al., 2017]. Formally, we play the following minimax two-player game between
Gshape and Dshape: minGshape maxDshape LGAN

shape
⇤, where

Lshape = Ev[Dshape(v)]� Ezshape [Dshape(Gshape(zshape)]. (1)

To enforce the Lipschitz constraint in Wasserstein GANs [Arjovsky et al., 2017], we add a gradient-
penalty loss �GPEṽ[(rṽDshape(ṽ)� 1)2] to Eqn. 1, where ṽ is a randomly sampled point along the
straight line between a real shape and a generated shape, and �GP controls the capacity of Dshape.
Since binary data is often challenging to model using GANs, we also experiment with distance
function (DF) representation [Curless and Levoy, 1996], which is continuous on the 3D voxel space.
See Section 4.1 for quantitative evaluations.

3.2 Generating 2.5D Sketches

Given a synthesized voxelized shape v = Gshape(zshape), how can we connect it to a 2D image?
Inspired by recent work on 3D reconstruction [Wu et al., 2017], we use 2.5D sketches [Barrow
and Tenenbaum, 1978, Marr, 1982] to bridge the gap between 3D and 2D. This intermediate repre-
sentation provides three main advantages. First, generating 2.5D sketches from a 3D voxel grid is
straightforward, as the projection is differentiable with respect to both the input shape and the view-
point. Second, 2D image synthesis from a 2.5D sketch can be cast as an image-to-image translation
problem [Isola et al., 2017], where existing methods have achieved successes even without paired
data [Zhu et al., 2017a]. Third, compared with alternative approaches such as colored voxels, our
method enables generating images at a higher resolution.

Here we describe our differentiable module for projecting voxels into 2.5D sketches. The input
to this module is camera parameters and a voxel grid, whose value indicates the probability of
each voxel’s presence. To render 2.5D sketches from voxels in a differentiable manner, we first
generate 3D perspective projection grids that align with camera rays. Each ray originates from
the camera center and goes through a pixel’s center in the image plane. We sample grid points at
evenly spaced depth along each ray. Next, we calculate the probability of presence at each grid point
using differentiable bilinear interpolation [Jaderberg et al., 2015] of the input voxels. Similar to
Tulsiani et al. [2017], we then calculate the expectation of visibility and depth along each ray. Given
a ray R with N samples R1, R2, ... , RN along its path, we calculate the visibility (silhouette) as
the expectation of the ray hitting the object:

P
N

j=1

Q
j�1
k=1(1� Rk)Rj . Similarly, the depth can be

calculated as
P

N

j=1 dj
Q

j�1
k=1(1� Rk)Rj , where dj is the depth of the sample Rj . This process is

fully differentiable since the gradients can be back-propagated through both expectation calculation
and bilinear interpolation.

Viewpoint estimation. Our two-dimensional viewpoint code zview encodes camera elevation and
azimuth. We sample zview from an empirical distribution pdata(zview) of the camera poses from the
training images. To estimate pdata(zview), we first render the silhouettes of several candidate 3D
models under uniformly sampled camera poses. For each input image, we compare its silhouette to
the rendered 2D views and choose the pose with the largest Intersection-over-Union value. More
details can be found in the supplement.

3.3 Learning 2D Texture Priors

Given the projected 2.5D sketches, which encode both the viewpoint and the object shape, we learn
to synthesize realistic 2D images. In particular, we learn a texture network Gtexture that takes a

⇤For notation simplicity, we denote Ev , Ev⇠pdata(v) and Ezshape , Ezshape⇠pdata(zshape).

4

randomly sampled texture code ztexture and the projected 2.5D sketches v2.5D as input, and produces a
2D image x = Gtexture(v2.5D, ztexture). This texture network needs to model both object texture and
environment illumination, as well as the differentiable rendering equation [Kajiya, 1986]. Fortunately,
this mapping problem can be cast as an unpaired image-to-image translation problem [Zhu et al.,
2017a, Yi et al., 2017, Liu et al., 2017]. We adopt recently proposed cycle-consistent adversarial
networks (CycleGAN) [Zhu et al., 2017a] as our baseline. Later, we relax the one-to-one mapping
restriction in CycleGAN to handle one-to-many mapping from 2.5D sketches to 2D images.

Here we introduce two encoders Etexture and E2.5D to estimate a texture code ztexture and 2.5D
sketches v2.5D from a real image x. We train Gtexture, Etexture, and E2.5D jointly with adversarial
losses [Goodfellow et al., 2014] and cycle-consistency losses [Zhu et al., 2017a, Yi et al., 2017]. We
use an adversarial loss on the final generated image as

LGAN
image = Ex[logDimage(x)] + E(v2.5D,ztexture)[log(1�Dimage(Gtexture(v2.5D, ztexture))], (2)

where Dimage learns to classify real and generated images. We apply the same adversarial loss for
2.5D sketches v2.5D:

LGAN
2.5D = Ev2.5D [logD2.5D(v2.5D)] + Ex[log(1�D2.5D(E2.5D(x))], (3)

where D2.5D aims to distinguish between 2.5D sketches v2.5D and estimated 2.5D sketches E2.5D(x)
from a real 2D image. We further use cycle-consistency losses [Zhu et al., 2017a] to enforce the
bijective relationship between the two domains as

Lcyc
2.5D = �cyc

2.5DE(v2.5D,ztexture) [kE2.5D(Gtexture(v2.5D, ztexture))� v2.5Dk1]
and Lcyc

image = �cyc
imageEx [kGtexture(E2.5D(x), Etexture(x))� xk1] , (4)

where �cyc
image and �cyc

2.5D control the importance of each cycle loss. The texture encoder Etexture and
2.5D sketches encoder E2.5D essentially serve as recognition models that recover the texture property
and 2.5D representation from a 2D image.

One-to-many mappings. Prior studies [Isola et al., 2016, Mathieu et al., 2016] have shown that
latent codes often get ignored in the conditional image generation due to the one-to-one mapping
assumption; vanilla CycleGAN also suffers from this problem based on our initial experiments. To
address this, we introduce a latent space cycle-consistency loss to encourage Gtexture to use the texture
code ztexture.

Lcyc
texture = �cyc

textureE(v2.5D,ztexture)[kEtexture(Gtexture(v2.5D, ztexture))� ztexturek1], (5)

where �cyc
texture controls its importance. Finally, to allow sampling at test time, we add a Kull-

back–Leibler (KL) loss on the z space to force Etexture(x) to be close to a Gaussian distribution:

LKL = �KLEx [DKL(Etexture(x)||N (0, I))] , (6)

where DKL(p||q) = �
R
z p(z) log

p(z)
q(z)dz and �KL is its weight. We write the final texture loss as

Ltexture = LGAN
image + LGAN

2.5D| {z }
Adversarial losses

+Lcyc
image + Lcyc

2.5D + Lcyc
texture| {z }

Cycle-consistency losses

+ LKL|{z}
KL loss

. (7)

Note that the latent space reconstruction loss Lcyc
texture has been explored in unconditional GANs [Chen

et al., 2016] and image-to-image translation [Zhu et al., 2017b, Almahairi et al., 2018]. Here we use
this loss to learn one-to-many mappings from unpaired data.

3.4 Our Full Model

Our full objective is

argmin
(Gshape,Gtexture,E2.5D,Etexture)

argmax
(Dshape,Dtexture,D2.5D)

�shapeLshape + Ltexture, (8)

where �shape controls the relative weight of shape and texture loss functions. We compare our visual
object networks against 2D deep generative models in Section 4.1.

5

randomly sampled texture code ztexture and the projected 2.5D sketches v2.5D as input, and produces a
2D image x = Gtexture(v2.5D, ztexture). This texture network needs to model both object texture and
environment illumination, as well as the differentiable rendering equation [Kajiya, 1986]. Fortunately,
this mapping problem can be cast as an unpaired image-to-image translation problem [Zhu et al.,
2017a, Yi et al., 2017, Liu et al., 2017]. We adopt recently proposed cycle-consistent adversarial
networks (CycleGAN) [Zhu et al., 2017a] as our baseline. Later, we relax the one-to-one mapping
restriction in CycleGAN to handle one-to-many mapping from 2.5D sketches to 2D images.

Here we introduce two encoders Etexture and E2.5D to estimate a texture code ztexture and 2.5D
sketches v2.5D from a real image x. We train Gtexture, Etexture, and E2.5D jointly with adversarial
losses [Goodfellow et al., 2014] and cycle-consistency losses [Zhu et al., 2017a, Yi et al., 2017]. We
use an adversarial loss on the final generated image as

LGAN
image = Ex[logDimage(x)] + E(v2.5D,ztexture)[log(1�Dimage(Gtexture(v2.5D, ztexture))], (2)

where Dimage learns to classify real and generated images. We apply the same adversarial loss for
2.5D sketches v2.5D:

LGAN
2.5D = Ev2.5D [logD2.5D(v2.5D)] + Ex[log(1�D2.5D(E2.5D(x))], (3)

where D2.5D aims to distinguish between 2.5D sketches v2.5D and estimated 2.5D sketches E2.5D(x)
from a real 2D image. We further use cycle-consistency losses [Zhu et al., 2017a] to enforce the
bijective relationship between the two domains as

Lcyc
2.5D = �cyc

2.5DE(v2.5D,ztexture) [kE2.5D(Gtexture(v2.5D, ztexture))� v2.5Dk1]
and Lcyc

image = �cyc
imageEx [kGtexture(E2.5D(x), Etexture(x))� xk1] , (4)

where �cyc
image and �cyc

2.5D control the importance of each cycle loss. The texture encoder Etexture and
2.5D sketches encoder E2.5D essentially serve as recognition models that recover the texture property
and 2.5D representation from a 2D image.

One-to-many mappings. Prior studies [Isola et al., 2016, Mathieu et al., 2016] have shown that
latent codes often get ignored in the conditional image generation due to the one-to-one mapping
assumption; vanilla CycleGAN also suffers from this problem based on our initial experiments. To
address this, we introduce a latent space cycle-consistency loss to encourage Gtexture to use the texture
code ztexture.

Lcyc
texture = �cyc

textureE(v2.5D,ztexture)[kEtexture(Gtexture(v2.5D, ztexture))� ztexturek1], (5)

where �cyc
texture controls its importance. Finally, to allow sampling at test time, we add a Kull-

back–Leibler (KL) loss on the z space to force Etexture(x) to be close to a Gaussian distribution:

LKL = �KLEx [DKL(Etexture(x)||N (0, I))] , (6)

where DKL(p||q) = �
R
z p(z) log

p(z)
q(z)dz and �KL is its weight. We write the final texture loss as

Ltexture = LGAN
image + LGAN

2.5D| {z }
Adversarial losses

+Lcyc
image + Lcyc

2.5D + Lcyc
texture| {z }

Cycle-consistency losses

+ LKL|{z}
KL loss

. (7)

Note that the latent space reconstruction loss Lcyc
texture has been explored in unconditional GANs [Chen

et al., 2016] and image-to-image translation [Zhu et al., 2017b, Almahairi et al., 2018]. Here we use
this loss to learn one-to-many mappings from unpaired data.

3.4 Our Full Model

Our full objective is

argmin
(Gshape,Gtexture,E2.5D,Etexture)

argmax
(Dshape,Dtexture,D2.5D)

�shapeLshape + Ltexture, (8)

where �shape controls the relative weight of shape and texture loss functions. We compare our visual
object networks against 2D deep generative models in Section 4.1.

5

randomly sampled texture code ztexture and the projected 2.5D sketches v2.5D as input, and produces a
2D image x = Gtexture(v2.5D, ztexture). This texture network needs to model both object texture and
environment illumination, as well as the differentiable rendering equation [Kajiya, 1986]. Fortunately,
this mapping problem can be cast as an unpaired image-to-image translation problem [Zhu et al.,
2017a, Yi et al., 2017, Liu et al., 2017]. We adopt recently proposed cycle-consistent adversarial
networks (CycleGAN) [Zhu et al., 2017a] as our baseline. Later, we relax the one-to-one mapping
restriction in CycleGAN to handle one-to-many mapping from 2.5D sketches to 2D images.

Here we introduce two encoders Etexture and E2.5D to estimate a texture code ztexture and 2.5D
sketches v2.5D from a real image x. We train Gtexture, Etexture, and E2.5D jointly with adversarial
losses [Goodfellow et al., 2014] and cycle-consistency losses [Zhu et al., 2017a, Yi et al., 2017]. We
use an adversarial loss on the final generated image as

LGAN
image = Ex[logDimage(x)] + E(v2.5D,ztexture)[log(1�Dimage(Gtexture(v2.5D, ztexture))], (2)

where Dimage learns to classify real and generated images. We apply the same adversarial loss for
2.5D sketches v2.5D:

LGAN
2.5D = Ev2.5D [logD2.5D(v2.5D)] + Ex[log(1�D2.5D(E2.5D(x))], (3)

where D2.5D aims to distinguish between 2.5D sketches v2.5D and estimated 2.5D sketches E2.5D(x)
from a real 2D image. We further use cycle-consistency losses [Zhu et al., 2017a] to enforce the
bijective relationship between the two domains as

Lcyc
2.5D = �cyc

2.5DE(v2.5D,ztexture) [kE2.5D(Gtexture(v2.5D, ztexture))� v2.5Dk1]
and Lcyc

image = �cyc
imageEx [kGtexture(E2.5D(x), Etexture(x))� xk1] , (4)

where �cyc
image and �cyc

2.5D control the importance of each cycle loss. The texture encoder Etexture and
2.5D sketches encoder E2.5D essentially serve as recognition models that recover the texture property
and 2.5D representation from a 2D image.

One-to-many mappings. Prior studies [Isola et al., 2016, Mathieu et al., 2016] have shown that
latent codes often get ignored in the conditional image generation due to the one-to-one mapping
assumption; vanilla CycleGAN also suffers from this problem based on our initial experiments. To
address this, we introduce a latent space cycle-consistency loss to encourage Gtexture to use the texture
code ztexture.

Lcyc
texture = �cyc

textureE(v2.5D,ztexture)[kEtexture(Gtexture(v2.5D, ztexture))� ztexturek1], (5)

where �cyc
texture controls its importance. Finally, to allow sampling at test time, we add a Kull-

back–Leibler (KL) loss on the z space to force Etexture(x) to be close to a Gaussian distribution:

LKL = �KLEx [DKL(Etexture(x)||N (0, I))] , (6)

where DKL(p||q) = �
R
z p(z) log

p(z)
q(z)dz and �KL is its weight. We write the final texture loss as

Ltexture = LGAN
image + LGAN

2.5D| {z }
Adversarial losses

+Lcyc
image + Lcyc

2.5D + Lcyc
texture| {z }

Cycle-consistency losses

+ LKL|{z}
KL loss

. (7)

Note that the latent space reconstruction loss Lcyc
texture has been explored in unconditional GANs [Chen

et al., 2016] and image-to-image translation [Zhu et al., 2017b, Almahairi et al., 2018]. Here we use
this loss to learn one-to-many mappings from unpaired data.

3.4 Our Full Model

Our full objective is

argmin
(Gshape,Gtexture,E2.5D,Etexture)

argmax
(Dshape,Dtexture,D2.5D)

�shapeLshape + Ltexture, (8)

where �shape controls the relative weight of shape and texture loss functions. We compare our visual
object networks against 2D deep generative models in Section 4.1.

5

as viewpoint and texture. To model the 3D shape prior and generate realistic shapes, we adopt the
recently proposed 3D Generative Adversarial Networks [Wu et al., 2016].

Consider a voxelized 3D object collection {vi}Ni , where vi 2 RW⇥W⇥W , we learn a generator Gshape
to map a shape code zshape, randomly sampled from a Gaussian distribution, to a W⇥W⇥W voxel
grid. Meantime, we train a 3D discriminator Dshape to classify if a shape is real or generated. Both
discriminator and generator contain fully volumetric convolutional and deconvolutional layers. We
find that the original 3D-GAN [Wu et al., 2016] sometimes suffers from mode collapse. To improve
the quality and diversity of the results, we use the Wasserstein distance in WGAN-GP [Arjovsky et al.,
2017, Gulrajani et al., 2017]. Formally, we play the following minimax two-player game between
Gshape and Dshape: minGshape maxDshape LGAN

shape
⇤, where

Lshape = Ev[Dshape(v)]� Ezshape [Dshape(Gshape(zshape)]. (1)

To enforce the Lipschitz constraint in Wasserstein GANs [Arjovsky et al., 2017], we add a gradient-
penalty loss �GPEṽ[(rṽDshape(ṽ)� 1)2] to Eqn. 1, where ṽ is a randomly sampled point along the
straight line between a real shape and a generated shape, and �GP controls the capacity of Dshape.
Since binary data is often challenging to model using GANs, we also experiment with distance
function (DF) representation [Curless and Levoy, 1996], which is continuous on the 3D voxel space.
See Section 4.1 for quantitative evaluations.

3.2 Generating 2.5D Sketches

Given a synthesized voxelized shape v = Gshape(zshape), how can we connect it to a 2D image?
Inspired by recent work on 3D reconstruction [Wu et al., 2017], we use 2.5D sketches [Barrow
and Tenenbaum, 1978, Marr, 1982] to bridge the gap between 3D and 2D. This intermediate repre-
sentation provides three main advantages. First, generating 2.5D sketches from a 3D voxel grid is
straightforward, as the projection is differentiable with respect to both the input shape and the view-
point. Second, 2D image synthesis from a 2.5D sketch can be cast as an image-to-image translation
problem [Isola et al., 2017], where existing methods have achieved successes even without paired
data [Zhu et al., 2017a]. Third, compared with alternative approaches such as colored voxels, our
method enables generating images at a higher resolution.

Here we describe our differentiable module for projecting voxels into 2.5D sketches. The input
to this module is camera parameters and a voxel grid, whose value indicates the probability of
each voxel’s presence. To render 2.5D sketches from voxels in a differentiable manner, we first
generate 3D perspective projection grids that align with camera rays. Each ray originates from
the camera center and goes through a pixel’s center in the image plane. We sample grid points at
evenly spaced depth along each ray. Next, we calculate the probability of presence at each grid point
using differentiable bilinear interpolation [Jaderberg et al., 2015] of the input voxels. Similar to
Tulsiani et al. [2017], we then calculate the expectation of visibility and depth along each ray. Given
a ray R with N samples R1, R2, ... , RN along its path, we calculate the visibility (silhouette) as
the expectation of the ray hitting the object:

P
N

j=1

Q
j�1
k=1(1� Rk)Rj . Similarly, the depth can be

calculated as
P

N

j=1 dj
Q

j�1
k=1(1� Rk)Rj , where dj is the depth of the sample Rj . This process is

fully differentiable since the gradients can be back-propagated through both expectation calculation
and bilinear interpolation.

Viewpoint estimation. Our two-dimensional viewpoint code zview encodes camera elevation and
azimuth. We sample zview from an empirical distribution pdata(zview) of the camera poses from the
training images. To estimate pdata(zview), we first render the silhouettes of several candidate 3D
models under uniformly sampled camera poses. For each input image, we compare its silhouette to
the rendered 2D views and choose the pose with the largest Intersection-over-Union value. More
details can be found in the supplement.

3.3 Learning 2D Texture Priors

Given the projected 2.5D sketches, which encode both the viewpoint and the object shape, we learn
to synthesize realistic 2D images. In particular, we learn a texture network Gtexture that takes a

⇤For notation simplicity, we denote Ev , Ev⇠pdata(v) and Ezshape , Ezshape⇠pdata(zshape).

4

2.5D sketches !".$%
shape code	'()*+,

viewpoint '!-,. texture code '/,0/12,

2D image 0

shape network 345678 differentiable projection 9 texture network 3/,0/12,

3D shape !

Figure 2: Our image formation model. We first learn a shape generative adversarial network Gshape
that maps a randomly sampled shape code zshape to a voxel grid v. Given a sampled viewpoint zview,
we project v to 2.5D sketches v2.5D with our differentiable projection module P . The 2.5D sketches
v2.5D include both the object’s depth and silhouette, which help to bridge 3D and 2D data. Finally,
we learn a texture network x = Gtexture(v2.5D, ztexture) to add a realistic, diverse texture to these
2.5D sketches, so that the final 2D image x cannot be distinguished from real images by an image
discriminator. The model is fully differentiable and end-to-end trained on both 2D and 3D data.

Inverse graphics. Motivated by the philosophy of “vision as inverse graphics” [Yuille and Kersten,
2006, Bever and Poeppel, 2010], researchers have made much progress in recent years on learning to
invert graphics engines, many with deep neural networks [Kulkarni et al., 2015b, Yang et al., 2015,
Kulkarni et al., 2015a, Tung et al., 2017, Shu et al., 2017]. In particular, Kulkarni et al. [2015b]
proposed a convolutional inverse graphics network. Given an image of a face, the network learns to
infer properties such as pose and lighting. Tung et al. [2017] extended inverse graphics networks with
adversarial learning. Wu et al. [2017, 2018] inferred 3D shapes from a 2D image via 2.5D sketches
and learned shape priors. Here we focus on a complementary problem—learning generative graphics
networks via the idea of “graphics as inverse vision”. In particular, we learn our generative model
with recognition models that recover 2.5D sketches from generated images.

3 Formulation

Our goal is to learn an (implicit) generative model that can sample an image x 2 RH⇥W⇥3 from
three factors: a shape code zshape, a viewpoint code zview, and a texture code ztexture. The texture
code describes the appearance of the object, which accounts for the object’s albedo, reflectance, and
environment illumination. These three factors are disentangled, conditionally independent from each
other. Our model is category-specific as the visual appearance of an object depends on the class. We
further assume that all the codes lie in their own low-dimensional spaces. During training, we are
given a 3D shape collection {vi}Ni , where vi 2 RW⇥W⇥W is a binary voxel grid, and a 2D image
collection {xj}Mj , where xj 2 RH⇥W⇥3. Our model training requires no alignment between 3D and
2D data. We assume that every training image has a clean background and only contains the object of
interest. This assumption makes our model focus on generating realistic images of the objects instead
of complex backgrounds.

Figure 2 illustrates our model. First, we learn a 3D shape generation network that produces realistic
voxels v = Gshape(zshape) given a shape code zshape (Section 3.1). We then develop a differentiable
projection module P that projects a 3D voxel grid v into 2.5D sketches via v2.5D = P(v, zview),
given a particular viewpoint zview (Section 3.2). Next, we learn to produce a final image given the
2.5D sketches v2.5D and a randomly sampled texture code ztexture, using our texture synthesis network
x = Gtexture(v2.5D, ztexture) in Section 3.3. Section 3.4 summarizes our full model and Section 3.5
includes implementation details. Our entire model is differentiable and can be trained end-to-end.

During testing, we sample an image x = Gtexture(P(Gshape(zshape), zview), ztexture) from latent codes
(zshape, zview, ztexture) via our shape network Gshape, texture network Gtexture, and projection module P .

3.1 Learning 3D Shape Priors

Our first step is to learn a category-specific 3D shape prior from large shape collections [Chang et al.,
2015]. This prior depends on the object class but is conditionally independent of other factors such

3

Image Formation:

3DGAN VON (Voxel) VON (DF)

3D

2D

DCGAN LSGAN WGAN-GP

VON (ours)

3D

2D

C
ar
s DCGAN LSGAN WGAN-GP

C
ha
ir
s

VON (ours)

Figure 3: Qualitative comparisons between VON and 2D GAN models: we show samples from
DCGAN [Radford et al., 2016], LSGAN [Mao et al., 2017], WGAN-GP [Gulrajani et al., 2017], and
our VON. For our method, we show both 3D shapes and 2D images. Note that VON is trained on
unpaired 3D shapes and 2D images, while DCGAN, LSGAN and WGAN-GP are trained only on 2D
images. The learned 3D prior from 3D data helps our model produce better samples. (Top: results on
cars; Bottom: results on chairs.)

3DGAN VON (Voxel) VON (DF)

Figure 4: 3D shape generation samples: from
left to right: shape generated by 3DGAN [Wu
et al., 2016], shape generated by VON on vox-
els, and shape generated by VON on distance
functions (DF). Our model produce more nat-
ural shapes.

3D-GAN (voxels) VON (voxels)

Cars 3.021 0.021

Chairs 2.598 0.082

3D-GAN (DF) VON (DF)

Cars 3.896 0.002

Chairs 1.790 0.006

Table 3: Quantitative comparisons on shape gener-
ation: Fréchet Inception Distances (FID) between
real shapes and shapes generated by 3D-GAN [Wu
et al., 2016] and our shape network both on vox-
els and distance function representation (DF). Our
model achieves the best results regarding FID.

7

Cars

viewpoint

texture

3D disentanglement

Samples from WGAN-GP

Our 3D, 2.5D, and 2D output

shape

Formulation

3D

2D

3D Fréchet Inception Distance• c
•
• a

What does it look like from a different viewpoint? 
What if we apply its texture to a van? 
Can we mix different 3D designs? 

2.5D !".$%
shape code &'()*+

viewpoint &!,+- texture code &.+/.01+

2D image /

shape network 234567 differentiable projection 8 texture network 2.+/.01+

3D shape !

viewpoint

texture

shape

viewpoint

texture

(a) Editing viewpoint, shape, and texture

shape

shape

viewpoint

texture

shape

shape

texture

texture

both

both

(b) Interpolation in the latent space

Object 1 Object 2

Object 1 Object 2

viewpoint

texture

(a) Editing viewpoint, shape, and texture

shape

shape

viewpoint

texture

shape

shape

texture

texture

both

both

(b) Interpolation in the latent space

Object 1 Object 2

Object 1 Object 2

Applications: Disentangled Interpolation
both

texture

shape

3D-GAN
(voxel)

VON
(voxels)

Applications: Texture Transfer

image
shape

image
shape

Object 1 Object 2Object 1 Object 2

q Do not capture the 3D nature of the world.
q Do not allow 3D-aware image manipulations.

Given an image of a car:
VON

(Distance Field)


